skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hayes, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beznea, Lucian; Putinar, Mihai (Ed.)
    For a model convection-diffusion problem, we obtain new error estimates for a general upwinding finite element discretization based on bubble modification of the test space. The key analysis tool is finding representations of the optimal norms on the trial spaces at the continuous and discrete levels. We analyze and compare three methods: the standard linear discretization, the saddle point least square and the upwinding Petrov-Galerkin methods. We conclude that the bubble upwinding Petrov-Galerkin method is the most performant discretization for the one dimensional model. Our results for the model convection-diffusion problem can be extended for creating new and efficient discretizations for the multidimensional cases. 
    more » « less
  2. We consider a model convection-diffusion problem and present our recent analysis and numerical results regarding mixed finite element formulation and discretization in the singular perturbed case when the convection term dominates the problem. Using the concepts of optimal norm and saddle point reformulation, we found new error estimates for the case of uniform meshes. We compare the standard linear Galerkin discretization to a saddle point least square discretization that uses quadratic test functions, and explain the non-physical oscillations of the discrete solutions. We also relate a known upwinding Petrov–Galerkin method and the stream-line diffusion discretization method, by emphasizing the resulting linear systems and by comparing appropriate error norms. The results can be extended to the multidimensional case in order to find efficient approximations for more general singular perturbed problems including convection dominated models. 
    more » « less
  3. Cell aggregates are widely used to study heterotypic cellular interactions during the development of vascularization in vitro. In this study, we examined heterotypic cellular spheroids made of adipose-derived stem cells and CD34+/CD31− endothelial progenitor cells induced by the transfection of miR-148b mimic for de novo induction of osteogenic differentiation and miR-210 mimic for de novo induction of endotheliogenesis, respectively. The effect of the microRNA (miRs) mimic treatment group and induction time on codifferentiation was assessed in spheroids formed of transfected cells over the course of a 4-week culture. Based on gene and protein markers of osteogenic and endotheliogenic differentiation, as well as mineralization assays, our results showed that miRs directed cell differentiation and that progenitor maturity influenced the development of heterotypic cellular regions in aggregates. Overall, the success of coculture to create a prevascularized bone model is dependent on a number of factors, particularly the induction time of differentiation before combining the multiple cell types in aggregates. The approach that has been proposed could be valuable in creating vascularized bone tissue by employing spheroids as the building blocks of more complex issues through the use of cutting-edge methods such as 3D bioprinting. 
    more » « less
  4. Solution-chemistry fabrication of semiconductor materials is an attractive synthesis method that allows for easy post-synthesis use in various applications. In this work, we investigate the solution-phase synthesis of a lesser-studied class of semiconductor materials, the binary sulfides of alkaline-earth (AE) metals and their potential for forming polysulfides. Studies have shown that metal polysulfides are widely applied as cathode materials in metal–sulfur batteries and isolated metal polysulfides outside of sulfur-containing solutions are quite rare. Other studies have shown that this material system has the potential to be a wide-bandgap semiconductor or superconducting electride and can also be used as an AESn precursor to access certain AE-M-S ternary materials. We show that the synthesis of Ba and Sr polysulfides is strongly correlated to the reaction temperature and that the length of the Sn2− oligomer chain is the dependent variable. To the best of our knowledge, we also report the synthesis of a previously unreported polymorph of SrS2. With bandgaps estimated via UV-vis spectroscopy, spanning the upper energy range of the visible spectrum (2.4–3.0 eV), the AE polysulfides have potential for semiconducting applications, such as displays, transparent conducting oxides, or tandem photovoltaics, among others. Paired with their high crystal abundance and relatively low toxicity, these materials make good candidates for future studies as wide-bandgap semiconductors. 
    more » « less
    Free, publicly-accessible full text available October 2, 2026
  5. The chalcogenide perovskite family has been steadily gaining increasing attention from the research community due to its optoelectronic properties and potential for diverse applications. While BaZrS3 and BaTiS3 have been the most extensively studied, other promising compounds in this family, such as SrxTiS3 (1.05 < x < 1.22), are now being explored for various optical, optoelectronic, and energy storage applications. However, challenges remain in achieving the low-temperature synthesis of SrxTiS3. In this study, we report, for the first time, the synthesis of SrxTiS3 nanocrystals at temperatures below 400 °C. The synthesized nanocrystals exhibit a rod-like morphology. Additionally, we have developed solution-processing routes to synthesize phase-pure SrxTiS3 thin films, marking the first reported instance of such films, at temperatures below 600 °C. We also demonstrate the solid-state synthesis of SrxTiS3 powder below 600 °C. Our work paves the way for new and exciting application avenues for SrxTiS3. 
    more » « less
    Free, publicly-accessible full text available September 2, 2026
  6. Chalcogenide perovskites have increasingly garnered attention in recent years for various optoelectronic applications. While distorted perovskites such as BaZrS3 are primarily being explored for photovoltaic applications, hexagonal ABS3 compounds such as BaTiS3 have been proposed for optical devices and thermoelectrics due to their intriguing properties arising from their quasi-1D structure, which imparts anisotropy in properties. However, other members of the hexagonal family remain largely unexplored, likely due to their harsh synthesis conditions. In this report, we synthesize nanocrystals of relatively unexplored members of the hexagonal ABX3 chalcogenides family, which also possess a similar rod-like morphology and could be useful for polarized photodetection applications. Specifically, we modified our previously reported sulfide perovskite nanoparticle synthesis route to produce BaNbS3 and BaTaS3 nanocrystals. Furthermore, we explored selenium and selenourea as precursors to synthesize selenide hexagonal nanocrystals such as BaTiSe3 and BaZrSe3, as well as other selenide analogues like Ba3Nb2Se9 and Ba3Ta2Se9. This marks the first report of nanocrystal synthesis for the BaMSe3 family, where M is an early transition metal. 
    more » « less
    Free, publicly-accessible full text available September 16, 2026
  7. Recently, chalcogenide perovskites, of the form ABX3, where typically A = alkaline earth metals Ca, Sr, or Ba; B = group IV transition metals Zr or Hf; and X = chalcogens S or Se, have become of interest for their potential optoelectronic properties. In this work, we build upon recent studies and show a general synthesis protocol, involving the use of carbon disulfide insertion chemistry, to generate highly reactive precursors that can be used towards the colloidal synthesis of numerous ABS3 nanomaterials, including BaTiS3, BaZrS3, BaHfS3, α-SrZrS3 and α-SrHfS3. We overcome the shortcomings in the current literature where BaZrS3 nanoparticles are synthesized in separate phases via colloidal methods and lack a reproducible protocol for orthorhombic perovskite nanoparticles. We present a high-temperature, hot-injection method that reliably controls the formation of the colloidal BaZrS3 nanoparticles with the Pnma orthorhombic distorted perovskite structure. We show that the alternate phase, most notably denoted by its extra peaks in the pXRD pattern, is distinct from the distorted perovskite phase as it has a different bandgap value obtained via UV-vis measurements. We also show that the reaction byproducts, resulting from the use of oleylamine and CS2, have their own photoluminescence (PL), and their residual presence on the surface of the nanoparticles complicates the interpretation of PL from the nanoparticles. The utility of these nanomaterials is also assessed via the measurement of their absorption properties and in the form of highly stable colloidal inks for the fabrication of homogeneous, crack-free thin films of BaZrS3 nanoparticles. 
    more » « less
    Free, publicly-accessible full text available December 11, 2026
  8. Abstract Inland waters receive large quantities of dissolved organic carbon (DOC) from soils and act as conduits for the lateral transport of this terrestrially derived carbon, ultimately storing, mineralizing, or delivering it to oceans. The lateral DOC flux plays a crucial role in the global carbon cycle, and numerous models have been developed to estimate the DOC export from different landscapes. We reviewed 34 published models and compared their characteristics to identify challenges in model applications and opportunities for future model development. We classified these models into three types: indicator-driven, hydrology-forced, and process-based DOC export simulation models. They differ mainly in their environmental inputs, simulation approaches for soil DOC production, leaching from soils to inland waters, and transit through inland waters. It is essential to consider landscape characteristics, climate conditions, available data, and research questions when selecting the most appropriate model. Given the substantial assumptions associated with these models, sufficient measurements are required to benchmark estimates. Accurate accounting of terrestrially derived DOC export to oceans requires incorporating the DOC produced in aquatic ecosystems and deposited with rainwater; otherwise, global export estimates may be overestimated by 40.7%. Additionally, improving the representation of mineralization and burial processes in inland waters allows for more accurate accounting of carbon sequestration through land ecosystems. When all the inland water processes are ignored or assuming DOC leaching is equivalent to DOC export, the loss of soil carbon through this lateral flux could be underestimated by 43.9%. 
    more » « less
  9. Colloidal semiconductor nanoparticles (NPs) have long been used as a reliable method for depositing thin films of semiconductor materials for applications, such as photovoltaics via solution-processed means. Traditional methods for synthesizing colloidal NPs often utilize heavy, long-chain organic species to serve as surface ligands, which, during the fabrication of selenized chalcogenide films, leaves behind an undesirable carbonaceous residue in the film. In an effort to minimize these residues, this work looks at using N-methyl-2-pyrrolidone (NMP) as an alternative to the traditional species used as surface ligands. In addition to serving as a primary ligand, NMP also serves as the reaction medium and coating solvent for fabricating CuInS2 (CIS) NPs and thin-film solar cells. Through the use of the NMP-based synthesis, a substantial reduction in the number of carbonaceous residues was observed in selenized films. Additionally, the resulting fine-grain layer at the bottom of the film was observed to exhibit a larger average grain size and increased chalcopyrite character over those of traditionally prepared films, presumably as a result of the reduced carbon content. As a result, a gallium-free CuIn(S,Se)2 device was shown to achieve power-conversion efficiencies of over 11% as well as possessing exceptional carrier generation capabilities with a short-circuit current density (JSC) of 41.6 mA/cm2, which is among the highest for the CIGSSe family of devices fabricated from solution-processed methods. 
    more » « less
  10. Climate zones play a significant role in shaping the forest ecosystems located within them by influencing multiple ecological processes, including growth, disturbances, and species interactions. Therefore, delineation of current and future climate zones is essential to establish a framework for understanding and predicting shifts in forest ecosystems. In this study, we developed and applied an efficient approach to delineate regional climate zones in the northeastern United States and maritime Canada, aiming to characterize potential shifts in climate zones and discuss associated changes in forest ecosystems. The approach comprised five steps: climate data dimensionality reduction, sampling scenario design, cluster generation, climate zone delineation, and zone shift prediction. The climate zones in the study area were delineated into four different orders, with increasing subzone resolutions of 3, 9, 15, and 21. Furthermore, projected climate normals under Shared Socioeconomic Pathways 4.5 and 8.5 scenarios were used to predict the shifts in climate zones until 2100. Our findings indicate that climate zones characterized by higher temperatures and lower precipitation are expected to become more prevalent, potentially becoming the dominant climate condition across the entire region. These changes are likely to alter regional forest composition, structure, and productivity. In short, such shifts in climate underscore the significant impact of environmental change on forest ecosystem dynamics and carbon sequestration potential. 
    more » « less